Calcium Deregulation and Mitochondrial Bioenergetics in GDAP1-Related CMT Disease
نویسندگان
چکیده
منابع مشابه
Mitochondrial bioenergetics and disease in Caenorhabditis elegans.
Simple multicellular animal model systems are central to studying the complex mechanisms underlying a bewildering array of diseases involving dysfunctional mitochondria. Mutant nuclear- and mitochondrial-encoded subunits of the Caenorhabditis elegans mitochondrial respiratory chain (MRC) have been investigated, including GAS-1, NUO-1, NUO-6, MEV-1, SDHB-1, CLK-1, ISP-1, CTB-1, and ATP-2. These,...
متن کاملA novel GDAP1 mutation 439delA is associated with autosomal recessive CMT disease.
BACKGROUND Charcot-Marie-Tooth (CMT) disease is the most common form of inherited motor and sensory neuropathy. Based on neurophysiological and neuropathological criteria CMT has been sub-classified into two main types: demyelinating and axonal. Furthermore, it is genetically heterogeneous with autosomal dominant, autosomal recessive (AR) and X-linked modes of inheritance. Thus far, seven genes...
متن کاملCMT-linked loss-of-function mutations in GDAP1 impair store-operated Ca2+ entry-stimulated respiration
GDAP1 is an outer mitochondrial membrane protein involved in Charcot-Marie-Tooth (CMT) disease. Lack of GDAP1 gives rise to altered mitochondrial networks and endoplasmic reticulum (ER)-mitochondrial interactions resulting in a decreased ER-Ca2+ levels along with a defect on store-operated calcium entry (SOCE) related to a misallocation of mitochondria to subplasmalemmal sites. The defect on SO...
متن کاملA locus-specific database for mutations in GDAP1 allows analysis of genotype-phenotype correlations in Charcot-Marie-Tooth diseases type 4A and 2K
BACKGROUND The ganglioside-induced differentiation-associated protein 1 gene (GDAP1), which is involved in the Charcot-Marie-Tooth disease (CMT), the most commonly inherited peripheral neuropathy, encodes a protein anchored to the mitochondrial outer membrane. The phenotypic presentations of patients carrying GDAP1 mutations are heterogeneous, making it difficult to determine genotype-phenotype...
متن کاملCalcium, bioenergetics, and neuronal vulnerability in Parkinson's disease.
The most distinguishing feature of neurons is their capacity for regenerative electrical activity. This activity imposes a significant mitochondrial burden, especially in neurons that are autonomously active, have broad action potentials, and exhibit prominent Ca(2+) entry. Many of the genetic mutations and toxins associated with Parkinson's disease compromise mitochondrial function, providing ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: International Journal of Molecular Sciences
سال: 2019
ISSN: 1422-0067
DOI: 10.3390/ijms20020403